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Abstract 

In this paper, novel algorithms are developed for electronic trading on financial time series by using 

quantization and volatility information for achieving High Frequency Trading (HFT). The proposed 

methods are estimation based and trading actions are carried out after estimating the Forward 

Conditional Probability Distribution (FCPD) on the quantized return values. This is motivated by the 

fact, that the forward distribution can give a more reliable prediction on the future values of the 

corresponding time series than simply using mean-square-error prediction. From the past samples it 

is easy to learn the Conditional Expected Value (CEV) if the possible past return values are small, 

which needs quantization. From the CEV one needs to obtain the FCPD, which can be achieved by 

introducing a special encoding scheme on the observed prices.  

For estimating FCPD, a FeedForward Neural Network (FFNN) will be used, which can provide a 

good estimation if the return levels are quantized properly and a special encoding scheme is applied.  

Based on this estimation, a trading signal is launched if the probability of price change becomes 

significant. This is measured by a quadratic criterion. Due to the encoding scheme and quantization, 

the complexity of learning and estimation have been reduced, which paves the way towards HFT. 

The efficiency of trading is further increased by using volatility information also estimated from the 

FCPD. 

The performance analysis of the new method has proven to be profitable according to the different 

performance measure (achieved profit, average profit, maximum drawdown …etc.) on all historical 

time series taken from FOREX. However, positive gain has usually been materialized on mid-prices. 

In order to beat the secondary effects, such as bid-ask spread and transaction costs, we needed to 

further optimize the method by optimizing meta-parameters with Simulated Annealing. This positive 

effect was demonstrated in the case of EUR/USD exchange rates. 
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quantization 
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1. Introduction 

The selection of portfolios which are optimal in terms of risk-adjusted returns has been an 

intensive area of research in the recent decades [1]. Furthermore, the main focus of portfolio 

optimization tends to move towards the application of High Frequency Trading (HFT) when a 

huge amount of financial data is taken into account within a very short time interval and trading 

with the optimized portfolio is also to be performed at high frequency within these intervals [2]. 

HFT presents a challenge to both algorithmic and architectural development, because of the need 

for developing algorithms running fast on specific architectures (e.g. GPGPU, FPGA chipsets) 

where speed is the most important attribute. On the other hand, profitable portfolio optimization 

and trading needs the evaluation of rather complex goal functions with different constraints 

which sometimes cast the problem in the NP hard domain [3] [4] [5]. As a result, the 

computational paradigms emerging from the field of neural computing, which support fast 

parallel implementation, are often used in the field algorithmic trading [6] [7] [8]. 



In this paper the, trading is done based on the estimated Forward Distribution (FD) based on 

the article [9]. Since FD takes its values on the possible asset prices (or returns), the number of 

probabilities to be estimated explodes exponentially with respect to the to the length of the 

memory. As a result, for the sake of accurate estimations, we need a very large training set, 

which prevents HFT due to the low speed of learning.  In order to speed up data collection and 

learning (using a small number of samples), we need to quantize the asset prices. Instead of 

quantizing the price itself, we quantize the change of the prices (returns), which varies in a 

smaller interval. In the paper, we use the Lloyd-Max algorithm for quantization to attain a good 

trading performance.  

Since the FCPD are calculated only on the quantization levels, the performance of the method 

highly depends on the quality of these levels. In this way, the error in the estimation of FCPD 

can be greatly reduced by using a proper quantization algorithm.  

In order to beat the bid-ask spread, we have introduced further adjustments in the algorithm: 

 trading only in high volatility periods; 

 optimizing the meta-parameters by Simulated Annealing. 

With these adjustments, we could secure positive profit in the presence of bid-ask spread on 

EUR/USD currency exchange rates. 

The material summarized above is organized as follows: 

 in Section 2, the theoretical background of trading by FFNN is outlined; 

 in Section 3, encoding schemes are introduced to obtain FCPD; 

 in Section 4, we apply optimal quantization for better FCPD estimation; 

 in Section 5, we present the further adjustments in the trading algorithm; 

 in Section 6, the computational model of the trading algorithm is mapped out; 

 in Section 7, we validate the methodology on generated and real historical financial 

time series. 

2. Theoretical background – trading with FFNN 

Let us assume that there is a vector valued random asset price process (e.g. the values of 

currency cross rates), which is denoted by  1 2( ) ( ),..., ( )t s t s ts . The return series of s(t) is 

defined as 
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A portfolio is expressed by a portfolio vector  1 2( ) ( ),..., ( )t w t w tw  yields a linear 

combination of asset returns (being the portfolio return) as a time series 
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  w r . The possible returns are taken from a discrete set

 1( ), ( ) ,...,i Mr t x t Q q q  . Let  

  ( 1) ( ) ,..., 1 , 1,...,i i j MP P x t q x t q x t L q i M         

denote the conditional probabilities having L past observations at hand. With these conditional 

probabilities, one can devise a Bayesian trading strategy, as follows: 
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Or more precisely,  

 
: :

2 2

: :
2 2

if   then buy at  and sell at 1;

if   then sell at  and buy at 1.

i i
M M

i i i i

i i
M M

i i i i

P P t t

P P t t

 

 

 

 

 

 
 (2.1) 

One can also see that the larger the value 
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  the more reliable decision we can 

make on trading. As a result, the risk of the trading can be fine-tuned by choosing a proper 0   

for which trading can only take place if 
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In order to perform trading as detailed above, one needs the estimation of the conditional 

probabilities       ( 1) ( ) ,..., 1 , 1,...,i i j MP P x t q x t q x t L q i M        . The estimation of 

, 1,...,iP i M  can be given by a FFNN, based on observing the historical part of the time series 

of a given portfolio x(t). Based on these observations, one can construct a training set containing 

some samples followed by the observed forward return x(k+1) given as follows: 

  ( ) , ( 1) , 1,...,K

k x k k K   x  where  ( ),..., ( 1)k x k x k L  x .  Let us then construct an 

FFNN based predictor  ( 1) , tx t Net  Θ x , where  ( ),..., ( 1)t x t x t L  x .  After learning 

we obtain 
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and the FFNN will provide the optimal non-linear prediction  
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Θ x Θ x x  (for further details see [10] [11] 

[12]).  

3. Coding scheme to obtain FCPD 

To perform the trading algorithm elaborated by formulas (2.1), one needs the conditional 

probabilities. In order to obtain them, let us encode the possible values of the return of the 

portfolio into an orthonormal vector set:  
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and rewrite the training set according to the encoding mechanism:  

  ( )
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Then by minimizing the error function 
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one will obtain    ( ) ,K

optNet EΘ x r x , where due to the encoding, component l of the 

conditional expected value will yield the corresponding conditional probability as  
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Having the conditional distribution at hand, one can then implement the trading strategy 

discussed above, in the form of  
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   (3.1) 

Unfortunately, the method outlined above, requires high complexity neural network as the 

dimension of the output  ,Nety Θ x   is  dim( ) My   which is the number of possible 

returns. The architecture is shown on Figure 1. 

 

Figure 1: The neural architecture to estimate FCPD 



High complexity FFNN contains a large number of free parameters which, in turn, requires a 

large learning set to train. This will prevent fast execution of the strategy and, as a result, hinders 

HFT. Thus, the present effort in this section is focused on decreasing the number of outputs, 

which will also reduce the number of free parameters to optimized. In order to achieve this, we 

quantize the time series.  

4. Optimal quantization for improving the estimation of FCPD  

The returns of a financial time series can be approximated by Gaussian random variables. 

However, equidistant quantization is only optimal for samples following uniform distribution. 

In order to overcome this shortcoming, we have quantized the expected value of the squared 

quantization error (i.e. the squared difference between original and quantized signals) can be 

reduced by applying non-equidistant quantization, due to the fact that quantizing the 

components which occur with smaller probability with larger error than the components which 

occur with higher probability, the overall error can be made smaller [13] [14]. In this way, one 

can obtain a more accurate estimation of the FCPD, which may yield better trading decisions. 

To determine the optimal quantization levels, we used the Lloyd-Max algorithm. 

The Lloyd-Max algorithm:  

1. use an initial set of representative levels:    1,2,...,iq i M   

2. assign each sample ( )x t  in training set ( )K  to closest representative iq :  

 ( ) : ( )   2,3,...,K

iC x Q x i i M     

3. calculate new representative levels: 
1

   1, 2,...,
i

i

x Bi

q x i M
C 

    

4. repeat 2. and 3. until no further distortion reduction (or applying a stopping criterion). 

 

Our simulations have proven that by running the Lloyd Max algorithm, the quantization error 

drops to 10 times lower than using equidistant quantization due to minimizing the objective 

function  
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5. Further adjustments in the trading algorithm 

The results have shown, that profitable trading is feasible using neural networks by 

predicting the forward conditional distribution on mid prices. However, to achieve profits in 

the presence of the bid ask spread and transaction costs, further refinements are needed.  

5.1. Trading in high volatility periods 

Based on the predicted standard deviation we can improve the trading efficiency. Each time the 

neural network gives an entry signal (either ‘long’ or ‘short’), we calculate the standard 

deviation from the forward conditional distribution as 
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If the standard deviation reaches a given threshold (high volatility), we enter into the trade, 

otherwise (low volatility), we stay away from the market.  
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   (5.1) 

5.2.  Optimizing the meta-parameters 

We introduced three methods to improve the performance: 

1. applying Lloyd-Max quantization algorithm to obtain accurate conditional probability 

estimation (see Section 4.); 

2. applying a filter which let us entering the trade only if the probability of upside (or 

downside) movement reaches a given threshold ε (see formula 3.1); 

3. applying a filter which let us entering the trade only if the standard deviation of the 

predicted conditional forward distribution reaches a given threshold η (see Section 5.1.). 

In order to get the best results we should not only test these methods separately, but the 

parameters of the model must be optimized together leading to meta-model optimization 

performed by Simulated Annealing [15]. 

We optimize the following parameters: 

 M, the number of quantization levels; 

 L, the memory of the process (number of inputs of FFNN); 

 ε, threshold for probabilities; 

 η, threshold for standard deviation; 

 N, the number of neurons in the hidden layer; 

 trainT , the length of training data expressed in hours; 

 retrainT , the retraining time window expressed in hours.  

These parameters are optimized by Adaptive Simulated Annealing algorithm, which is 

available e.g. in MATLAB.  

6. Computational approach 

We wrote a comprehensive optimization framework to optimize the metaparameters on a 

parallel manner. The model is shown on Figure 2. 

 
Figure 2: Optimization procedure 

 



 

The FFNN model parameter identification and the evaluation of prediction by calculating the 

conditional probabilities is made on multiple portfolios, which helps us select an optimal 

portfolio. Then, the trading signal for taking the appropriate trading actions is made on the basis 

of the identified portfolio and the cost function. 

Our computational framework is shown by Figure 2 and detailed as follows: 

 select a single asset portfolio vector  1,...,
T

Nw ww  and the corresponding time series; 

 quantize the time series; 

 fit a Feed Forward Neural Network to the time series of the selected portfolio by using 

the Levenberg-Marquardt learning algorithm; 

 evaluate the objective function by predicting the future conditional probability 

distribution according to the identified model given the portfolio; 

 continue the optimization process until the optimal parameters are obtained. The 

objective function we use is maximizing the average profit per trade; 

 form a trading signal based on the price behaviour of the optimal portfolio to decide on 

which trading action is to be launched; 

Finally, one can carry out a performance analysis by testing and evaluating various numerical 

indicators for the sake of comparing the profitability of the different methods. 

Since Lloyd-Max quantization algorithm works on an iterative manner, it significantly 

increases the computing time. However, we have shown, that using this optimized quantization, 

better profit can be achieved on each time series we tested on. 

6. Performance analysis 

An extensive back-testing framework has been created to handle trading actions on various 

input data and provide numerical results for the sake of comparing different methods on 

different time series (either FOREX or artificially generated data).  

At first, we investigate the estimation performance of the proposed model on generated data. 

The results showed, that FFNN can successfully predict the forward distribution, furthermore 

in some case it is more accurate, than the standard histogram method (simply calculating the 

relative frequencies). Table 11 in the Appendix shows the corresponding results. 
 

For a detailed comparative analysis, the following performance measures were calculated for 

each experiments on the corresponding time series: 

 Profit gained - the money realized by the agent; 

 Maximum drawdown - the maximum loss from a peak to a trough of the balance; 

 Number of trades – the number of trades the agent made on the on the evaluation period; 

 Winning rate - ratio of the total number of winning trades to the number of all trades; 

 Average trade duration – the average holding period of an asset or portfolio in seconds.  

 Average profit per trade (in points, which is the smallest possible price change) - the 

money realized by the agent divided by the number of trades. 

 

In this section, we show the numerical results obtained on the following foreign exchange data 

sets: 

 EUR/USD; 



 GBP/USD and 

 NZD/USD 

tick data on the day of 2015. 05. 27. We only tested on a single asset time series, however the 

procedures can be used for multiasset portfolios. 

In each case the length of memory of neural network was 3 and we used the last 30 minutes 

of tick data observations from the past to fit FFNNs, while we retrained the network after 3 

minutes of tick data. The number of quantization levels was M=5 in each simulation. 

For the sake of comparison, we used several FFNNs, each with different number of neurons in 

the hidden layer. The results are shown on the following tables. 

6.1. Numerical results obtained in the case of using equidistant 

quantization  

For the sake of comparison, we ran the trading algorithm in the case of using equidistant 

quantization. 

Hidden 

layer size Profit 

Maximum 

Drawdown 

Number 

of trades 

Winning 

rate 

Average 

trade 

duration 

Average 

profit in 

points 

1 -0.43 % 0.49 % 2 50.0 % 1945 -21.50 

3 -2.60 % 7.45 % 37 46.0 % 1262 -7.02 

5 -0.46 % 0.54 % 4 50.0 % 976 -11.50 

8 2.57 % 7.20 % 216 81.5 % 338 1.19 

10 2.61 % 8.02 % 284 81.0 % 245 0.92 

20 3.53 % 7.32 % 299 78.9 % 239 1.18 

30 2.39 % 7.76 % 236 72.5 % 307 1.01 

50 4.95 % 6.42 % 355 78.3 % 202 1.39 
Table 1: Trading on the EUR/USD 

Hidden 

layer size Profit 

Maximum 

Drawdown 

Number 

of trades 

Winning 

rate 

Average 

trade 

duration 

Average 

profit in 

points 

1 -1.11 % 1.11 % 2 0.00 % 2655 -55.50 

3 -3.16 % 6.37 % 57 78.95 % 1456 -5.54 

5 0.27 % 5.37 % 149 81.88 % 518 0.18 

8 1.80 % 4.64 % 182 80.77 % 415 0.98 

10 -2.43 % 6.42 % 157 88.54 % 530 -1.54 

20 2.31 % 4.76 % 246 73.58 % 307 0.94 

30 2.72 % 5.76 % 253 68.77 % 299 1.07 

50 2.97 % 5.97 % 368 64.95 % 204 0.80 
Table 2: Trading on the GBP/USD 

Hidden 

layer size Profit 

Maximum 

Drawdown 

Number 

of trades 

Winning 

rate 

Average 

trade 

duration 

Average 

profit in 

points 

1 0.98 % 1.52 % 10 40 % 2018 9.80 

3 0.55 % 3.03 % 94 55 % 724 0.58 

5 1.23 % 3.29 % 278 69 % 215 0.44 



8 0.75 % 4.98 % 400 70 % 156 0.18 

10 3.16 % 4.58 % 552 72 % 110 0.57 

20 5.63 % 2.90 % 504 75 % 113 1.11 

30 6.15 % 3.23 % 607 74 % 91 1.01 

50 7.59 % 3.40 % 747 72 % 75 1.02 
Table 3: Trading on the NZD/USD 

One must note, that the winning ratio (on mid prices) was very high (75 % or more), which 

means the FFNN can predict the future prices.  

To calculate profitability of the trading algorithm in real circumstances, one must taking into 

account the spread. We measured the average spread of the 3 assets on the testing period:  

 EUR/USD – 5.49 points; 

 GBP/USD – 9.55 points; 

 NZD/USD – 12.29 points. 

Unfortunately, the price movement is not enough to cover the bid-ask spread (the average 

spread is higher than the average profit per trade). 

It can be also seen that by increasing the neurons in the hidden layer, the average trade 

duration is decreasing and the number of trades is increasing. 

6.2. Numerical results obtained in the case of using Lloyd-Max 

quantization  

Next, we applied Lloyd-Max quantization on the return series. The results are shown below. 

Hidden 

layer 

size Profit 

Maximum 

Drawdown 

Number 

of 

trades 

Winning 

rate 

Average trade 

duration 

Average profit 

in points 

1 0.96 % 0.00 % 1 100.0 % 1859 96.00 

3 -2.20 % 2.67 % 2 50.0 % 16011 -110.00 

5 0.95 % 0.04 % 4 75.0 % 3625 23.75 

8 1.00 % 0.72 % 17 58.8 % 767 5.88 

10 0.16 % 3.47 % 232 85.3 % 318 0.07 

20 3.78 % 4.34 % 214 66.8 % 292 1.76 

30 10.09 % 5.04 % 546 76.0 % 103 1.85 

50 21.85 % 3.15 % 740 70.5 % 67 2.95 
Table 4: Trading on the EUR/USD 

Hidden 

layer 

size Profit 

Maximum 

Drawdown 

Number 

of 

trades 

Winning 

rate 

Average trade 

duration 

Average profit 

in points 

1 0.03 % 0.00 % 2 100.0 % 0.11 1.50 

3 1.50 % 0.14 % 42 81.0 % 159 3.57 

5 -7.25 % 9.07 % 193 66.8 % 288 -3.75 

8 -0.52 % 3.55 % 255 83.1 % 268 -0.20 

10 -1.05 % 4.31 % 304 84.5 % 225 -0.34 

20 0.93 % 7.83 % 1017 70.2 % 50 0.09 

30 8.27 % 5.05 % 1248 72.8 % 33 0.66 

50 6.72 % 7.16 % 1472 69.2 % 31 0.45 
Table 5: Trading on the GBP/USD 



Hidden 

layer 

size Profit 

Maximum 

Drawdown 

Number 

of 

trades 

Winning 

rate 

Average trade 

duration 

Average 

profit in 

points 

1 0.00 % 0.00 % 0 0.0 % 0 0.00 

3 -0.72 % 1.72 % 19 63.2 % 139 -3.79 

5 4.57 % 2.18 % 500 81.0 % 111 0.91 

8 12.05 % 1.75 % 695 87.1 % 70 1.73 

10 16.43 % 1.96 % 1166 78.1 % 31 1.41 

20 17.03 % 1.60 % 1462 73.3 % 25 1.16 

30 17.41 % 3.08 % 1781 77.5 % 22 0.97 

50 17.32 % 3.20 % 1869 72.4 % 22 0.93 
Table 6: Trading on the NZD/USD 

One can see, that the profit generated by Lloyd-Max optimizer trading algorithm on each time 

series is increased compared to the profits achieved by equidistant quantization. On the other 

hand, the maximal drawdown is decreased, which is also favourable. Unfortunately, the average 

profit per trade did not increased, which is essential for beating the bid-ask spread and 

transaction costs. 

7. Further optimizing the trading performance  

The next numerical results are obtained by improving the trading with the methods listed in 

Section 5.  

First, we examined the effect of the filter specified in Section 5.1. on EUR/USD return series. 

We set η from 0.5E-6 to 4E-6 to discover the best parameter setting. The results are shown 

below. 

Minimal 

standard 

deviation - 

η (E-6) Profit 

Maximum 

Drawdown 

Number 

of trades 

Winning 

rate 

Average 

trade 

duration 

Average 

profit in 

points 

0.5 8.19 % 2.08 % 842 63 % 48.43 0.972 

1 6.66 % 2.12 % 570 68.4 % 47.32 1.168 

1.25 7.78 % 1.69 % 465 74.6 % 56.44 1.673 

1.5 8.98 % 0.91 % 390 70.8 % 24.5 2.302 

1.75 7.02 % 0.91 % 257 73.9 % 43.6 2.731 

2 5.90 % 0.41 % 224 75.4 % 42.48 2.633 

2.25 4.71 % 0.22 % 164 72.6 % 55.17 2.872 

2.5 1.00 % 0.22 % 122 63.9 % 2.98 0.819 

3 0.11 % 0.22 % 31 71.0 % 6.84 0.354 

4 0.11 % 0.13 % 7 71.4 % 6.52 1.571 
Table 7: Trading on the EUR/USD 

One can see, that the predicted standard deviation has a high impact on the trading results. To 

ensure profitability, one must beat the bid-ask spread and transaction cost – e.g. the average 

profits on the trades must be greater, than the average spread. By setting the filter to 2.25E-6 

on EUR/USD, we can secure almost 3 points per trade. 

  



7.1.  Optimizing the meta-parameters 

To achieve more profit, we optimized the meta-parameters of the model. The optimization 

were performed on a 2nd generation Intel Core i7 machine, using 4 parallel threads at a time. 

During 2 hours, the optimizer run the strategy for approximately 100 different states. The 

following tables show the 10 best results for the three FOREX time series. 

Case Profit 

Max 

drawdown 

Average profit 

in points 

Number 

of trades Hit ratio 

1 5.35 % 1.33 % 44.6 12 66.67 % 

2 5.31 % 1.34 % 35.4 15 66.67 % 

3 5.26 % 1.34 % 35.1 15 60.00 % 

4 6.55 % 0.22 % 29.7 22 63.64 % 

5 6.78 % 0.18 % 27.1 25 72.00 % 

6 1.97 % 1.77 % 19.7 10 60.00 % 

7 6.31 % 0.31 % 14.2 45 46.67 % 

8 3.48 % 1.50 % 13.2 25 64.00 % 

9 7.11 % 0.20 % 12.5 59 69.49 % 

10 4.86 % 1.65 % 10.4 47 42.55 % 

Table 8: Trading on the EUR/USD 

 

Case Profit 

Max 

drawdown 

Average profit 

in points 

Number 

of trades Hit ratio 

1 1.93 % 0.24 % 9.2 21 71.43 % 

2 0.84 % 0.18 % 7.0 12 75.00 % 

3 1.29 % 0.33 % 2.8 45 77.78 % 

4 1.54 % 0.36 % 2.8 55 80.00 % 

5 0.33 % 0.05 % 2.7 12 75.00 % 

6 2.21 % 0.35 % 2.6 83 81.93 % 

7 0.34 % 1.79 % 2.4 14 42.86 % 

8 1.60 % 0.78 % 2.3 68 61.76 % 

9 1.56 % 0.35 % 2.2 70 65.71 % 

10 6.08 % 0.37 % 2.1 282 67.73 % 
Table 9: Trading on the GBP/USD 

 

Case Profit 

Max 

drawdown 

Average profit 

in points 

Number 

of trades Hit ratio 

1 1.01 % 4.98 % 5.61 18 44.44 % 

2 1.64 % 0.16 % 4.56 36 66.67 % 

3 5.67 % 1.96 % 4.2 135 57.78 % 

4 4.31 % 1.76 % 3.88 111 81.08 % 

5 4.91 % 1.10 % 2.7 182 56.04 % 

6 4.86 % 2.36 % 1.79 271 81.18 % 

7 9.78 % 1.83 % 1.77 553 75.95 % 

8 3.89 % 0.76 % 1.66 234 53.85 % 



9 14.46 % 1.80 % 1.54 939 74.33 % 

10 11.81 % 1.58 % 1.51 782 72.25 % 
Table 10: Trading on the NZD/USD 

Note that in each of these cases we could secure positive profit on the mid prices. The largest 

increase of average profit was attained on the EUR/USD rate, which may, in this case, will pave 

the way towards profitable trading on bid-ask price series also. In the Appendix, the parameters 

of the ten cases are given. While, on the other two assets, the strategy does not have enough 

prediction power to yield profitable trading. 

Conclusions 

As the numerical results demonstrated, the new methods were able to yield profit on the mid-

prices of the underlying rates (EUR/USD, GBP/USD, NZD/USD). This profit was even 

achieving 21.85 % in the best case. However, when the bid-ask spread was also taken into 

account in the numerical analysis, then positive profit tended to remain only in the case of 

EUR/USD. As a result, further adjustments needed to beat the bid-ask spread. These further 

adjustments included: 

 applying optimal quantization by Lloyd-Max algorithm; 

 trading only in high volatility periods; 

 optimizing the meta-parameters by Simulated Annealing. 

With these adjustments, we could secure positive profit in the presence of bid-ask spread. In 

the case of EUR/USD, the profit was more than 5.3 % for the tested one-day period. 

Nevertheless, these adjustments needed heuristic considerations (such as trying out empirically 

the size of memory and identifying high volatility periods). There is also a slowdown of the 

execution of algorithm due to running Simulated Annealing. 
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Appendix 

In the tables below, we give the results in details. Table 11 shows the performance of predicting 

the FCPD by FFNN and standard histogram method. 

MSE L=1 L=2 L=3 
N=1 0.00296 0.0089 0.00153 

N=3 0.00741 0.00867 0.00162 

N=5 0.00624 0.00697 0.00157 

N=8 0.00624 0.00613 0.00144 

N=10 0.00624 0.00486 0.00174 

N=20 0.00624 0.00412 0.00178 

N=30 0.00624 0.00412 0.00189 

N=50 0.00624 0.00412 0.00224 

Histogram 0.00624 0.00412 0.00224 

Table 11: Validating the prediction model 

The next table shows the metaparameters of the ten cases of EUR/USD. 

Case ε M L N η Ttrain Tretrain 

1 0.2723 6 1 20 3.50E-06 3.00 3.00 

2 0.0710 4 1 30 4.50E-06 3.00 3.00 

3 0.3461 4 1 50 3.50E-06 3.00 3.00 

4 0.5866 8 2 10 4.00E-06 1.00 3.00 

5 0.5866 6 2 10 4.00E-06 1.00 3.00 

6 0.4789 8 2 3 2.75E-06 4.00 0.17 

7 0.4952 8 3 1 3.50E-06 3.00 0.33 

8 0.2624 6 1 50 2.50E-06 4.00 1.00 

9 0.5866 8 3 10 4.00E-06 1.00 3.00 

10 0.0710 4 1 30 2.75E-06 3.00 3.00 

Table 12: The metaparameters of the ten cases on EUR/USD 


